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Mit Hilfe informationstheoretischer Argumente wird der Anfangszustand zur Zeit ¢, bei der Ab-
leitung kinetischer Gleichungen eliminiert, indem man ihn auf Grund der Javynesschen Methode aus
der vorausgesetzten Kenntnis des Zustandes zur Zeit ¢ bestimmt. Damit kann eine abgeschlossene
allgemeine Bewegungsgleichung der Form i7%1,:= Tny,: erhalten werden.

1. Introduction

In order to derive kinetic equations one starts
from the Liouville-equation, which can be trans-
formed into the BBGKY-hierarchy by reduction.
Breaking off the hierarchy 173 or evaluation of the
hierarchy by BocoLsuBov’s synchronization assump-
tion* then leads to closed, explicitly time-indepen-
dent equations of motion for the one-particle distri-
bution function, which are called kinetic equations
(Vlasov-, Boltzmann-, Fokker-Planck-, Lenard-Ba-
lescu-equation and so on). However, each of these
equations demands particular physical assumptions
and suppositions, which allow for systematic cor-
rections only under certain conditions. Only recently
PompE 5 succeeded in deriving from a uniform for-
malism the above-mentioned equations and the Rice-
Allnat-equation by the aid of a rigorous separation
of the perturbation expansion from the evolution of
the hierarchy. More rigorously, this program will be
performed in the present series of papers by using
the functional formalism of classical statistics 678,

The functional evolution operator exp(—i7 L)
following from the Liouville-equation can be repre-
sented by exp(—:7L°) S,.

An exponential expansion for the S-operator

S.=N, ssmexp(L,), 1=t—t, (1)

is obtained by a general linked-cluster theorem & 9.

The equations for reduced distribution functions
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gained by reduction of the statistical functional
mainly depend on the linked-cluster sum I',, which
thus becomes the central quantity of the method
developed here.

The equations of motion for the reduced distribu-
tion functions obtained in compact formulation by
means of the S-operator harmonize with the equa-
tions derived by Conen 2. They still contain expli-
citly the time interval v between the initial time ¢,
and the observation time ¢ and also the initial state
itself. However, kinetic equations as defined above
do not contain the interval T and the initial state;
they are closed equations for the motions of reduced
distribution functions. The aim of this paper is to
eliminate the initial state.

The evolution equation
ny,1=G.nyy, (2)

allows to calculate the distribution n; ; from n; ; by
the evolution operator G, which is generally non-
linear. For the elimination of the initial state CoHEN 2
obtained ny; from (2) by iteration relative to
powers of the density. This result is introduced into
the equation of motion, which follows from (2) by
time-differentiation

ni,e= G, ny, g, (3)
Then he obtained formally
n1,t=G, Gy ny ;. (4)
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This procedure has essential disadvantages. On the
one hand, the convergence of the iteration cannot be
proved in a rigorous mathematical sense. It cannot
be proved that G; 'n; ; ever is a positive definite
distribution function. On the other hand, because of
the complicated structure of Eq. (2) CoHEN was not
able to specify the general term of the iterative solu-
tion and with it the general structure of (4). There-
fore a general partial summation for a systematic
correction of known kinetic equations is difficult.
Further difficulties seemed to appear in connection

with so-called secular terms 9.

These disadvantages may be overcome by an in-
version of Eq. (2) with the aid of information-theo-
retical arguments. An exact discussion shows that this
equation is the answer given by information-theory
to the question what may be said about n; ¢, if only
ny, 4, is known. Accordingly the initial state ny ; may
be expressed by the equation

nl,t°=G-1nl,ta (5)

if only ny ; is known. Thus ny; can be eliminated

from (3):
ni,i=G,G_.ny,;. (6)

There is no doubt that in this procedure the left-
hand side of (5) is again a positively definite dis-
tribution function. Moreover, the general structure
of G_, can be given like that of G,. In this way
partial summations can be performed comparatively
easily. They lead to kinetic equations in arbitrary
orders of the expansion relative to interaction and
density 1.

In part 2 we investigated what may generally be
said about the time evolution of macroscopic ob-
servables, i. e. about quantities which in contrast to
the microscopic state of the system do not contain
macroscopically irrelevant information. Similar to
Axprews 12 and Pompe and Voss 12 a formal equa-
tion of motion may be given which does not contain
the initial state. With the results of the functional
formalism of part 3 and 4 the general equation of
motion of the one-particle distribution functions fol-
lows in part 5 from this formal equation of motion.
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2. Time Evolution of Macroscopic Observables

In the following, a macroscopic observable is
thought to be every quantity A4, which by an equa-
tion

dl...dN
a=[ Lo yhome

is an average with the symmetrized distribution func-
tion fi .. n,¢ of the particle coordinates and mo-
menta i = {1;, ;} . The reduced distribution func-
tions in particular may be treated as macroscopic
observables. The time behaviour of a macroscopic
observable is generally given with f; n ; by the
Liouville-equation

. 3
iz hone=b. vh. v
1..N
U...v=2L+32 U, (2)
% )
L=_;? 23 . —;%(m=u (,,3,_,&)
kE =, drg’ By =it 192 Spr 9Opy)°

However, if it is possible at least by approximation
to represent the time evolution of A4; by a closed,
explicitly time-independent equation

. 3
lat At=TAt’ (3)

then (3) is to be the kinetic equation for A4;. This
definition is a consequent generalization of Boco-
LIUBOV’s conception of a kinetic equation %. BocoLsu-
Bov demands for instance for the one-particle distri-
bution function f; (in systems with a defined particle
number N) that their time-dependence from the
BBGKY-hierarchy be represented by the functional
dependence fi2 ;= fi2[fi,:] in the form of a closed
kinetic equation.

The operator T is time-independent in general.
How kinetic equations with time-independent T can
be obtained from the general equation of motion
derived in this paper will be shown in the following
paper II. In the functional formalism of classical
statistics 78 the macroscopic quantity 4 can be ob-
tained by an equation

s v (dl...dNV
At=PA['§A)7 F}A‘):J N! '7]1°'-77Nf1...N,t
(4)

12 F. C. Axprews, Proc. Nat. Acad. Sci. US 54, 13 [1965].
13 'W. Pomee and K. Voss, Ann. Phys. Leipzig 19, 253 [1967].



KINETIC EQUATIONS I

corresponding to (1). Here 7 is a one-particle test-
function depending on k= {1, Pz}, F/™ is the
generating statistical functional, A is the functional
operator corresponding to the physical quantity
ai...n, and P symbolizes the prescription to set all
test-functions 7; equal to one. The Liouville-equa-
tion (2) appears in the functional formalism in the
form

F™M —exp{—itL} F{¥,
(5)

. d
i-5 F® = LF®,

dl d2

v 0 5 4
L=L°+L =jd1’7111 (;E‘*‘J‘ 21 771’72'12‘5,7—13,72-

However, it is impossible to derive an equation like
(3) exactly from (5) and (4), because after time-
differentiation one gets from (4) only

i%A,:PALFgN). (6)

Approximations or assumptions are necessary in
order to derive a closed equation of motion for
macroscopic observables. The most important me-
thod for the solution of this problem > 13 is to con-
struct the phase-space distribution and thus the func-
tional F{™ by means of information theory4, if
only A, is known. Then the temporal behaviour of
the statistical functional is given by the solution (5)
of the Liouville-equation. Finally A4; can be deter-
mined with (4):

At=PAexp{—i1L}KAto. (7)
The time-differentiation of (7) yields

ig;At=PALexp{—i1L}KA,n, (8)

taking into account that P, A, L and the construc-
tion operator K are time-independent. At this point,
a general equation of motion such as (3) can be
given, if 4, in (8) can be expressed by 4;. For this
purpose CoHEN 2 obtains 4; by an inversion of the
nonlinear equation (7) and eliminates it in (8).
Thus the difficulties appear which have been men-
tioned in the introduction.

In order to overcome these difficulties one solves
the problem posed in (3) in two steps by means of
information-theory 5. First the temporal derivative
Ay is represented by (8) from the knowledge of 4,,.

14 E. T. Jayxes, Phys. Rev. 106, 620 [1957] ; 108, 171 [1957].
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Then A4;, is determined, if 4; is known. The corre-
sponding equation is analogous to (7):

A;,=PAexp{itL} K 4;. (9)

Putting (9) into (8) one gets the general equation
of motion for the macroscopic quantity 4 derived
by means of information-theory

.
“a?A‘ (10)
=PALexp{—itL}KPAexp{itL}K A;=T, 4;.

So the time-derivative of the quantity A, is expres-
sed only by 4;. The operator T which is generally
nonlinear is still dependent on the time-interval
7=t—t,. For physical reasons assumptions about 7
relative to the special system have to be made (e.g.
ty— ), which yield time-independent equations
of motion, i. e. kinetic equations.

3. Classical Perturbation Theory

In this part the classical perturbation theory in
functional formalism ¢ will be treated in as much
as it is necessary for the following investigations.
The starting-point of the classical perturbation theo-
ry is the Liouville-equation (2.5). The complications
in examining the temporal evolution of the statistical
functional F¥) are caused by the interaction L” in
(2.5). Therefore it is useful to regard the undis-
turbed motion with exp(—i7 L°) as zeroth order of
a perturbation expansion relative to L’. The S-ope-
rator formalism known from quantum-theory yields
with
exp{ —i7L} = exp{ —i7L°} S,,

. 9 =
i 8.=L".8,,8,=1,

L7, = exp{i7L°} LV exp{ —itL°} (1)

dl d2 .
= me naexplit(li+1b) } s

g s o
* exp{ _lT(ll+l2)}E—(%
the representation of the S-operator
S.=1+(~i) [ay L
0
T ~ 4G ~
+(—i)20fdzlltvlofdt2Lf,+... ; (2)

15 Similar consideration were made by R. M. Lewis, J. Math.
Phys. 8, 1448 [1967]. We are indebted to Prof. L. Warp-
mann for calling our attention to this paper.
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With the aid of the general linked-cluster theorem % ?
the series (2) can be summarized by

S.=N, smexp{l.}, T,=0. (3)
Here I', is the sum of all linked clusters of the
series (2). The normal ordering operator N, g5, in
(3) does not allow the functional derivatives ap-
pearing in T, to be applied to T, “itself after ex-
panding the series exp I'; . If one expresses L, from
(1) with the graphs from ¢

T
(=d) fdy L= | (4)
0 «——0—
on gets for T, the series
<—»»i ——(
«—eo—( el ==l
2 4
I‘,: I +2' I I +'2*"—_.'"' ¢ Fraes
«—— 0 — —eo—eo— ° |
. e (3)

where the sequence of interaction lines characterizes
the sequence of the corresponding time-integrations ©.

With (1), (3), and (5) the functional F{™ is for-

mally transformed into the functional F§¥ ) . By this,
the factors exp{ £i7 L} in (2.10) may be replaced
by the expression exp{=i7 L’} S. .. Then the ope-
rators P and K remain to be investigated.

Since the quantity of interest here is the one-
particle distribution f;, the statistical functional
resp. the N-particle distribution f; y has to be con-
structed, if only f, is known. This problem was solv-
ed in detail in 6. The result in terms of information-
theory is

h..,N,,=N!fxf---f:Y’l, P — Udl n 1Lt t}
(6)

Finally, the reduced distribution functions may
be obtained from F according to ® with

fr..se=Pg, ,,px)
-exp{ —itL°} S, F{™,

P 5’7
(7)
) 9 Ty frt]N
fl,t=Pg,;eXP{"”L°}sr Hdl oy }
resp. with
fl...s,t
_ . ds (¥)
—exp{—Lt(l1+"'+lS)}P677,...6773S'F" 5
(8)

S| Jare el

f1, ,_exp{—LTl,}P
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Now the necessary results of the classical perturba-
tion theory are summarized. However, applying the
S-operator to the initial functional in (7) resp. (8)
proves very complicated. Therefore an extension of
this method to systems with an arbitrary number of
particles shall be given. In both cases the corre-
spondence is as good as with canonical and grand-
canonical ensembles in equilibrium statistical me-
chanics.

4. Generalized Statistical Functional

The functional (2.4) may be generalized in re-
ference to systems with an arbitrary number of
particles by the definition

0...00
dl...dN
N
F,= % w )y i

Here f;...n.; means the distribution function in an
N-particle phase-space, and w) means the prob-
ability to find just NV particles in the system. Re-
duced distribution functions may be obtained from
F; with the same procedure as from the N-particle
functional F{¥). Since these generalized distribution
functions have other properties than those following

1e--Mvfionee (1)

from f; .y (vid. e. g. '7), they are denoted by
ny...st:
s
ny...s, t"P 6 Ft
d(s+1)..
w® j (N—-S)' fl (2)

The operator P also sets all #; equal to one after
performing the functional derivatives. The general-
ized functional can be constructed with the general-
ized distribution functions ny __, instead of w™) and
fi...n. For this purpose new functions ¢ are intro-

duced

d )
17=1+€, 67]_57 (3)

instead of the test-functions 7). After evaluation, one
gets

Z — g 81 sy, st (4)
Because of (3) the operator P sets all ¢; equal to
zero. The ny 5 may also be obtained from (4) by
the functional operators d/d¢ .

16 K. Voss, Ann. Phys. Leipzig 19, 370 [1967].
17 K. Voss, Wiss. Z. Techn. Univ. Dresden, to be published.
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Knowledge of the one-particle distribution func-
tion n, at a certain time is not sufficient for an exact
representation of the higher distribution functions
and thus of the functional F;. However, with the aid
of information-theoretical methods 17 it can be shown
that the n; 5 may be represented by the factoriza-
tion-ansatz

ny,.. .s=nNyny...Ns, (5)

if only n, is known. As in (3.6) the correlations are
neglected in (5). With (4) and (5) the simple for-

mula
Fy=exp{fdl e ny ;} (6)

follows for F;. The classical perturbation theory
described in part 3 may be used directly for the
generalized functional (1) or (6), because neither
the Liouville-operator L nor the functional operator
S, nor the linked-cluster representation depend on
the particle number N.

5. General Equation of Motion for the
One-Particle Distribution

By time-differentiation of the evolution equation
(3.8) especially for the generalized one-particle dis-
tribution n, ; the equation

. 9 ;
ig,me=lng+ Jd2 lsexp{—iz(l; +1,)} -
1
&2
. - F
P‘S’?l‘s’hsr e

which is known from the BBGKY-hierarchy is ob-
tained by means of (3.1) and the properties of P.
Because of PS,=1 and PT',=0, i.e. the proper-
ties of S, and T', following from the normalization,
the relation

1)
Pgn‘l (N, a1an exp{rt})pto=P[Ft.,1 T rr.lFto] s

62
Pm (N, 510 exp{ L. }) Fy, (2)
=P[F1o+ T, 1F o+ T, oFs
+ (Ny 00, T 1Te0) Fry + T, 19 Fy,]

is obtained with the linked-cluster theorem. The
indices of F;,, ; resp. I'; ; symbolize the correspond-
ing functional derivatives O0F;/d7; resp. 6T ,/dn;.
Taking into account the form (4.6) of F; one ob-
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tains with (4.3)
Ft.,,1='l1.t,,F/..’

(3)

F[ml =ny, tnn?v foF[n .

Therefore all operators /87 =3/de in the linked-
clusters may be replaced by the corresponding one-
particle functions. Finally, one has to put every 7
equal to one and every ¢ equal to zero because of P.
With T, (gx=1, 8/dn=ny )= I'.[n;] from (2)
one has obtained

)
P S. Fry=ny 1, + I 1lns]

&2
o,y Ons S. Fi,= (n1,4,+ 1", 1[n4,]) (4)

“(ne, 4, + I 2[ne,]) + I 12[ne,] -
This last expression may be substituted easily into
(1). However, simplifications are possible by using
equations coresponding to (2.7) and (2.9)

ni,e =exp{ —itl}[ny, ¢, + e 1ln,]1, (5)
ny,,=exp{itli}[ny ¢+ . 1[n]] .
They were gained from (3.8) with the aid of (2),
(3), and (4). The equation of motion (1) may be
written with (4) and (5) in the form

P

)
iy ny, = ﬂ1,t+fd2 Lio[ny, ¢no ¢

+exp{ —it(l+ 1)}, 12[n:]],
n1,t.,=exp{iT11}[n1,t+r—z,1[nt]] . (6)

This equation contains a Vlasov-term. Because of
the correlations and the mutual interaction of the
particles the corrective term still depends on the
one-particle distribution ny ., which, however, can
be calculated from n; ;.

Thus a general closed equation of motion (6) for
the one-particle distribution n; ; can be obtained by
using functional methods and by arguments of in-
formation-theory. The form of this equation is suit-
able for further investigations, because only the
functional representation of I'; 15[n;] and I'_, [n,]
has to be determined. An exact summation of all
linked-clusters in (3.5) is impossible. However, par-
tial summations may be performed, which at the
same time afford the possibility to carry out the
limit T — oo, in order to derive closed, explicitly
time-independent equations, i.e. kinetic equations
for the one-particle distribution. This program is
contained in the following paper II.



