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Mit Hilfe informationstheoretischer Argumente wird der Anfangszustand zur Zeit t0 bei der Ab-
leitung kinetischer Gleichungen eliminiert, indem man ihn auf Grund der JAYNEsschen Methode aus 
der vorausgesetzten Kenntnis des Zustandes zur Zeit t bestimmt. Damit kann eine abgeschlossene 
allgemeine Bewegungsgleichung der Form ini,t— Tn\, < erhalten werden. 

1. Introduction 

In order to derive kinetic equations one starts 
from the Liouville-equation, which can be trans-
formed into the BBGKY-hierarchy by reduction. 
Breaking off the hierarchy1-3 or evaluation of the 
hierarchy by B O G O L J U B O V ' S synchronization assump-
tion 4 then leads to closed, explicitly time-indepen-
dent equations of motion for the one-particle distri-
bution function, which are called kinetic equations 
(Vlasov-, Boltzmann-, Fokker-Planck-, Lenard-Ba-
lescu-equation and so on). However, each of these 
equations demands particular physical assumptions 
and suppositions, which allow for systematic cor-
rections only under certain conditions. Only recently 
P O M P E 5 succeeded in deriving from a uniform for-
malism the above-mentioned equations and the Rice-
Allnat-equation by the aid of a rigorous separation 
of the perturbation expansion from the evolution of 
the hierarchy. More rigorously, this program will be 
performed in the present series of papers by using 
the functional formalism of classical statistics 6~8. 

The functional evolution operator exp ( — i r L) 
following from the Liouville-equation can be repre-
sented by exp ( — it L°) S T . 

An exponential expansion for the S-operator 

Sr = NVi d/dri exp ( r t ) , T = t-t0 (1) 

is obtained by a general linked-cluster theorem6' 9. 
The equations for reduced distribution functions 
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2 E . G . D . COHEN, P h y s i c a 2 8 , 1 0 2 5 [ 1 9 6 2 ] , 
3 S . T . CHOH a n d G . E . UHLENBECK, T h e s i s , U n i v e r s i t y o f M i -

chigan 1958. 
4 N. N. BOGOLJUBOV, J. Phys. (USSR) 10, 256, 265 [1946] , 

english translation in "Studies in Statistical Mechanics", 
Vol. I, Amsterdam 1961. 

5 W . POMPE, Ann. Phys. Leipzig 20, 326 [1968] . 

gained by reduction of the statistical functional 
mainly depend on the linked-cluster sum T t , which 
thus becomes the central quantity of the method 
developed here. 

The equations of motion for the reduced distribu-
tion functions obtained in compact formulation by 
means of the S-operator harmonize with the equa-
tions derived by C O H E N 2 . They still contain expli-
citly the time interval t between the initial time tQ 
and the observation time t and also the initial state 
itself. However, kinetic equations as defined above 
do not contain the interval r and the initial state; 
they are closed equations for the motions of reduced 
distribution functions. The aim of this paper is to 
eliminate the initial state. 

The evolution equation 

ni, t = Gz nlt t, (2) 

allows to calculate the distribution nj^ from n\<t, by 
the evolution operator G r , which is generally non-
linear. For the elimination of the initial state C O H E N 2 

obtained nltto from (2) by iteration relative to 
powers of the density. This result is introduced into 
the equation of motion, which follows from (2) by 
time-diff erentiati on 

,t = Gxn\tU. (3) 

Then he obtained formally 

T i i . ^ G ^ G r V f (4) 
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This procedure has essential disadvantages. On the 
one hand, the convergence of the iteration cannot be 
proved in a rigorous mathematical sense. It cannot 
be proved that G^ 1 n-\.,t ever is a positive definite 
distribution function. On the other hand, because of 
the complicated structure of Eq. (2) C O H E N was not 
able to specify the general term of the iterative solu-
tion and with it the general structure of (4) . There-
fore a general partial summation for a systematic 
correction of known kinetic equations is difficult. 
Further difficulties seemed to appear in connection 
with so-called secular terms 10. 

These disadvantages may be overcome by an in-
version of Eq. (2) with the aid of information-theo-
retical arguments. An exact discussion shows that this 
equation is the answer given by information-theory 
to the question what may be said about n^ t, if only 
n^ to is known. Accordingly the initial state t may 
be expressed by the equation 

ni,tt = G-r n1>t, (5) 
if only n-î t is known. Thus nittt can be eliminated 
from (3) : 

ni,T = Gx G_T nlit. (6) 

There is no doubt that in this procedure the left-
hand side of (5) is again a positively definite dis-
tribution function. Moreover, the general structure 
of G_R can be given like that of G T . In this way 
partial summations can be performed comparatively 
easily. They lead to kinetic equations in arbitrary 
orders of the expansion relative to interaction and 
density n . 

In part 2 we investigated what may generally be 
said about the time evolution of macroscopic ob-
servables, i. e. about quantities which in contrast to 
the microscopic state of the system do not contain 
macroscopically irrelevant information. Similar to 
A N D R E W S 12 and P O M P E and Voss 13 a formal equa-
tion of motion may be given which does not contain 
the initial state. With the results of the functional 
formalism of part 3 and 4 the general equation of 
motion of the one-particle distribution functions fol-
lows in part 5 from this formal equation of motion. 

1 0 J . R . DORFMAN a n d E . G . D . COHEN, J . M a t h . P h y s . 8 , 2 8 2 
[1967] , 

11 U. BAHR, P. QUAAS, and K. Voss, Z. Naturforsch. 23 a , 638 
[1968] ; hereafter referred to as II. 

2. Time Evolution of Macroscopic Observables 

In the following, a macroscopic observable is 
thought to be every quantity A, which by an equa-
tion 

. f dl...dN ... 
A t = \ Oi . . . iV h...N,t ( 1 ) 

is an average with the symmetrized distribution func-
tion fi...N,t of the particle coordinates and mo-
menta i = { t i , pj} . The reduced distribution func-
tions in particular may be treated as macroscopic 
observables. The time behaviour of a macroscopic 
observable is generally given with / i . . . w,< by the 
Liouville-equation 

i "37 fi... N, t = h... N / t . . . N, T 

li...N=Ih+hIhi, (2 ) 
k Ä+Z 

, _ .Pfc , _ . 3 u ( | t fc—r; l ) ( 3 3 \ 
l k = ~ l m 3 r l k l = = l 3r f c \3p* 3 p z / ' 

However, if it is possible at least by approximation 
to represent the time evolution of At by a closed, 
explicitly time-independent equation 

iltAt = TAt, (3) 

then (3) is to be the kinetic equation for At. This 
definition is a consequent generalization of B O G O -

LJUBOV'S conception of a kinetic equation 4 . B O G O L J U -

BOV demands for instance for the one-particle distri-
bution function (in systems with a defined particle 
number N) that their time-dependence from the 
BBGKY-hierarchy be represented by the functional 
dependence /12, t — /12 [/i. <] in the form of a closed 
kinetic equation. 

The operator T is time-independent in general. 
How kinetic equations with time-independent T can 
be obtained from the general equation of motion 
derived in this paper will be shown in the following 
paper II. In the functional formalism of classical 
statistics 6 - 8 the macroscopic quantity A can be ob-
tained by an equation 

At = PAF«'>, Fj»)=j d l - d N Vl...VNf 

(4) 

12 F. C. ANDREWS, Proc . Nat. Acad. Sei. US 54, 13 [1965 ] . 
13 W . POMPE and K. Voss, Ann. Phys. Leipzig 19, 253 [ 1 9 6 7 ] . 



corresponding to (1). Here r]k is a one-particle test-
function depending on k = {r/c, J)*} , FtW is the 
generating statistical functional, A is the functional 
operator corresponding to the physical quantity 
ai.. _ jv i and P symbolizes the prescription to set all 
test-functions r]

k
 equal to one. The Liouville-equa-

tion (2) appears in the functional formalism in the 
form 

i I FtW = L F t W , /<*> = exp{ — ixL} F^, 
(5) 

T To Tv f-M I <5 . f d l d2 , 8 8 
J

 1

 dr/l J 2! 

However, it is impossible to derive an equation like 
(3) exactly from (5) and (4), because after time-
differentiation one gets from (4) only 

i^At = PALF\NK (6) 

Approximations or assumptions are necessary in 
order to derive a closed equation of motion for 
macroscopic observables. The most important me-
thod for the solution of this problem 1 2 , 1 3 is to con-
struct the phase-space distribution and thus the func-
tional by means of information theory14, if 
only Ato is known. Then the temporal behaviour of 
the statistical functional is given by the solution (5) 
of the Liouville-equation. Finally At can be deter-
mined with (4) : 

At = P A exp{ — ixL} K Ato. (7) 

The time-differentiation of (7) yields 

ijtAt = PALexp{-irL}KAto, (8) 

taking into account that P, A, L and the construc-
tion operator K are time-independent. At this point, 
a general equation of motion such as (3) can be 
given, if Ato in (8) can be expressed by At. For this 
purpose C O H E N 2 obtains Ato by an inversion of the 
nonlinear equation (7) and eliminates it in (8) . 
Thus the difficulties appear which have been men-
tioned in the introduction. 

In order to overcome these difficulties one solves 
the problem posed in (3) in two steps by means of 
information-theory 15. First the temporal derivative 
At is represented by (8) from the knowledge of Att. 

14 E. T. JAYNES, Phys. Rev. 106, 620 [1957] ; 108, 171 [1957]. 

Then Af> is determined, if At is known. The corre-
sponding equation is analogous to (7 ) : 

Ato = P A exp{i r L} K At. (9) 

Putting (9) into (8) one gets the general equation 
of motion for the macroscopic quantity A derived 
by means of information-theory 

i~l tA t (10) 

=P A L exp{ — irL}KPA exp{ix L}K At = TxAt. 

So the time-derivative of the quantity At is expres-
sed only by At. The operator T which is generally 
nonlinear is still dependent on the time-interval 
r = t —10 . For physical reasons assumptions about x 
relative to the special system have to be made (e. g. 
t0 —> oo), which yield time-independent equations 
of motion, i. e. kinetic equations. 

3. Classical Perturbation Theory 

In this part the classical perturbation theory in 
functional formalism6 will be treated in as much 
as it is necessary for the following investigations. 
The starting-point of the classical perturbation theo-
ry is the Liouville-equation (2.5). The complications 
in examining the temporal evolution of the statistical 
functional F^N) are caused by the interaction V in 
(2.5). Therefore it is useful to regard the undis-
turbed motion with exp ( — ix L°) as zeroth order of 
a perturbation expansion relative to L\ The S-ope-
rator formalism known from quantum-theory yields 
with 

exp{ — irL} = exp{ — ix L0} S T , 

i~^Sx = L\ Sx, Sq = 1, 

L\ = exp{ix L°} V exp{ -ixL0} (1) 

= \^ViV2^{ix(l1 + l 2 ) } l 1 2 

' ex?{-ir(l1 + l 2 ) } ~ ~ 

the representation of the S-operator 

sx=i+i-i)fdhK 
0 

+ (-iVfdt1hfdt2Ll + ... . (2) 
o o 

15 Similar consideration were made by R. M. LEWIS, J. Math. 
Phys. 8, 1448 [1967] . W e are indebted to Prof . L. WALD-
MANN for calling our attention to this paper. 



With the aid of the general linked-cluster theorem6'9 

the series (2) can be summarized by 

Sr = Nv,didr, exp{r r } , r o = 0 . (3) 
Here 1% is the sum of all linked clusters of the 
series (2). The normal ordering operator N V t i n 
(3) does not allow the functional derivatives ap-
pearing in rT to be applied to IV itself after ex-
panding the series exp T t . If one expresses 17 x from 
(1) with the graphs from 6 

( - o j d t , ! ^ j (4) 
— < 

on gets for Tr the series 

• -< 
r = I H I I 

4 
2! 

I 
< + . . . 

* ! - < (5) 
where the sequence of interaction lines characterizes 
the sequence of the corresponding time-integrations 6. 
With (1) , (3) , and (5) the functional is for-
mally transformed into the functional F\NK By this, 
the factors e x p { ± i r L } in (2.10) may be replaced 
by the expression exp{ ± ix L°} S± T. Then the ope-
rators P and K remain to be investigated. 

Since the quantity of interest here is the one-
particle distribution f t , the statistical functional 
resp. the N-particle distribution / i . . . # has to be con-
structed, if only ft is known. This problem was solv-
ed in detail in 16. The result in terms of information-
theory is 
f fj\h-t ...to.t 

F ' N ) = [I 
j i h.t 

(6) 

Finally, the reduced distribution functions may 
be obtained from F[N} according to 6 with 

(7) 
fv, to 

Ii' -N fl>t = P^-exp{-ixL<>} Sx | j*dl' 
resp. with 
fl...s,t 

= exp{-ix(ll + ... + ls)}P ST F£\ 

(8) 

ds 

h, t = exp{-ix I j P ~ Sx [ J d l ' tu 
fv, to 

N 

Now the necessary results of the classical perturba-
tion theory are summarized. However, applying the 
S-operator to the initial functional in (7) resp. (8) 
proves very complicated. Therefore an extension of 
this method to systems with an arbitrary number of 
particles shall be given. In both cases the corre-
spondence is as good as with canonical and grand-
canonical ensembles in equilibrium statistical me-
chanics. 

4. Generalized Statistical Functional 

The functional (2.4) may be generalized in re-
ference to systems with an arbitrary number of 
particles by the definition 

0 . . .OO 

Ft=* 2 wW 
M 

d l . . . dN 
TV! (1) 

Here /I...JV, < means the distribution function in an 
/V-particle phase-space, and w ® means the prob-
ability to find just N particles in the system. Re-
duced distribution functions may be obtained from 
Ft with the same procedure as from the /V-particle 
functional . Since these generalized distribution 
functions have other properties than those following 
from / i . . . AT 
nl...s,t' 

(vid. e. g. 17), they are denoted by 

8* 
ni...s,t = P drji_drjsFt 

N 
d(s + l ) . . . d j V 

(N-s) ! h. . N, t (2) 

The operator P also sets all rjk equal to one after 
performing the functional derivatives. The general-
ized functional can be constructed with the general-
ized distribution functions n i . . . s instead of and 
fi...N • For this purpose new functions e are intro-
duced 

i = i L ( 3 ) 

instead of the test-functions rj. After evaluation, one 
gets 

Ft 

0 . . . O O c 

' f dl . . d s 
£l...es . S, t (4) 

Because of (3) the operator P sets all equal to 
zero. The may also be obtained from (4) by 
the functional operators d/de . 

16 K. Voss, Ann. Phys. Leipzig 19, 370 [1967]. 
17 K. Voss, Wiss. Z. Techn. Univ. Dresden, to be published. 



Knowledge of the one-particle distribution func-
tion % at a certain time is not sufficient for an exact 
representation of the higher distribution functions 
and thus of the functional Ft. However, with the aid 
of information-theoretical methods 17 it can be shown 
that the ni... s may be represented by the factoriza-
tion-ansatz 

ni... s — nl n2 ' •• ns ? (5) 
if only nl is known. As in (3.6) the correlations are 
neglected in (5). With (4) and (5) the simple for-
mula 

Ft = exp{ /d l £\ n t > ( 6 ) 
follows for Ft. The classical perturbation theory 
described in part 3 may be used directly for the 
generalized functional (1) or (6), because neither 
the Liouville-operator L nor the functional operator 
S, nor the linked-cluster representation depend on 
the particle number /V. 

5. General Equation of Motion for the 
One-Particle Distribution 

By time-differentiation of the evolution equation 
(3.8) especially for the generalized one-particle dis-
tribution nl<t the equation 

3 

(1) 

i = U »1. t + / d 2 I12 exp{ - i x +l2) } 
<52 

' P örhdr/2S*Ft' 

which is known from the BBGKY-hierarchy is ob-
tained by means of (3.1) and the properties of P. 
Because of P Sx = 1 and P T t = 0 , i.e. the proper-
ties of Sx and rT following from the normalization, 
the relation 

p ̂  m exp{rr}) Ft. = P[Ft+ r r , t Ftt] , 

=P[F ta,i2 + rr> i F + rr 2 F <o>1 

is obtained with the linked-cluster theorem. The 
indices of Ftn, & resp. rT>j symbolize the correspond-
ing functional derivatives dFtJdrjk resp. dTJdrji. 
Taking into account the form (4.6) of Fto one ob-

(3) 

tains with (4.3) 
F t„i = ii, taF /0, 
Ftl),i = nhton2,t/t0. 

Therefore all operators d/dr] = d/de in the linked-
clusters may be replaced by the corresponding one-
particle functions. Finally, one has to put every r\ 
equal to one and every e equal to zero because of P. 
With r r O f c - l , d/dVl = nUo) = rT[nt,] from (2) 
one has obtained 

8 P ^- ST Ft, = nu t, + rr> i [nj , 

P ^ S r F , 0 = ( n M 0 + r T > 1 [ n J ) (4) 

(5) 

•(»»a .̂ + A.aC»«.]) + A , «[>*.] • 
This last expression may be substituted easily into 
(1). However, simplifications are possible by using 
equations coresponding to (2.7) and (2.9) 

nu t = exp{ - i x l j ta + Tt, l ] » 
ni. u = exp{i t I J [nt> t + r_X t i[n,] ] . 

They were gained from (3.8) with the aid of (2), 
(3), and (4). The equation of motion (1) may be 
written with (4) and (5) in the form 

i "37 ni . t — h "l, t + fd2 l12 [ni, t n2, t 

+ exp{ -ir(ll + l2)}rTtt2[nto]] , 
"l,«0 = exp{£TIi) [m,(+ ] . (6) 

This equation contains a Vlasov-term. Because of 
the correlations and the mutual interaction of the 
particles the corrective term still depends on the 
one-particle distribution which, however, can 
be calculated from t • 

Thus a general closed equation of motion (6) for 
the one-particle distribution n^ t c a n t>e obtained by 
using functional methods and by arguments of in-
formation-theory. The form of this equation is suit-
able for further investigations, because only the 
functional representation of TXt and -T _ r, 
has to be determined. An exact summation of all 
linked-clusters in (3.5) is impossible. However, par-
tial summations may be performed, which at the 
same time afford the possibility to carry out the 
limit x —>• oo , in order to derive closed, explicitly 
time-independent equations, i. e. kinetic equations 
for the one-particle distribution. This program is 
contained in the following paper II. 


